Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Res Med Sci ; 27: 62, 2022.
Article in English | MEDLINE | ID: covidwho-2024812

ABSTRACT

Background: COVID-19 is responsible for the latest pandemic. Dipeptidyl peptidase-4 (DPP-4) is one of the cellular receptors of interest for coronavirus. The aim of this study was to assess the roles of DPP-4 inhibitors in prognosis of COVID-19 infection in patients with type 2 diabetes mellitus. Materials and Methods: retrospective cohort study was performed in 2020 in military medical centers affiliated to AJA University of Medical Sciences in Tehran on 220 patients with type 2 diabetes mellitus who were admitted in medical centers with COVID-19 infection. We collected demographic data of patients including age, gender, drug history, usage of DPP-4 inhibitors, clinical presentations at the time of the first visit, and the disease outcome including hospitalization duration and need for respiratory assist. Results: The study population consisted of 133 males (60.5%) and 87 females (39.5%), with a mean age of 66.13 ± 12.3 years. Forty-four patients (20%) consumed DPP-4 inhibitors (sitagliptin and linagliptin). Patients who were treated with DPP-4 inhibitors required less oxygen (O2) therapies compared to other cases (76.7% vs. 88.6%, P = 0.04). Patients who were treated with DPP-4 inhibitors had significantly lower hospitalization duration compared to other cases (6.57 ± 2.3 days vs. 8.03 ± 4.4 days, respectively, P = 0.01). There were no significant differences between the two groups of patients regarding survival rates (P = 0.55). Age was a predictive factor for survival (odds ratio, 1.13; 95% confidence interval, 1.04-1.23; P = 0.004). Conclusion: DPP-4 inhibitors could significantly decrease hospitalization days in patients with type 2 diabetes mellitus who were hospitalized for COVID-19. However, DPP-4 inhibitor usage showed no statistically significant impact on survival. Age was the important prognostic factor.

2.
Revista Cubana de Medicina ; 61(1), 2022.
Article in Spanish | CAB Abstracts | ID: covidwho-1970791

ABSTRACT

Given the appearance of a "new virus" in the of Wuhan city, China, called SARSCoV- 2, which causes the well-known severe acute respiratory syndrome (COVID- 19), many scientists are trying to find a solution against the virus that has caused a pandemic. In this search, a transmembrane glycoprotein called dipeptidyl peptidase 4 or DPP-4 was found present on the surface of different types of cells and a target in MERS-Co-V infection, which opens hope by suspecting that DPP- 4 can be a target in different coronaviruses by serving as a therapeutic strategy. Added to this, there are results that find elevated DPP-4 in patients with severe complications from COVID-19, which may be a possible marker of severity. However, there is still little emphasis on the identification and association of this glycoprotein with COVID-19. To this effect, a bibliographic review was carried out on the most significant aspects of Dipeptidyl Peptidase 4 and its function against COVID-19.

3.
Endocrinol Metab (Seoul) ; 36(4): 904-908, 2021 08.
Article in English | MEDLINE | ID: covidwho-1328154

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic remains an unbeaten enemy. Unfortunately, no targeted treatment option is available. Patients with type 2 diabetes mellitus (T2DM) have increased odds for severe or fatal disease, as demonstrated in recent observational studies. There is an ongoing discussion regarding the impact of different antidiabetic drug classes on outcomes of interest among affected subjects. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been placed at the epicenter, since the DPP-4 enzyme seems to be implicated in the disease pathogenesis. Herein we present an updated meta-analysis of observational studies addressing the risk of COVID-19 death among patients with T2DM on prior DPP-4 inhibitor treatment. We pooled data from 10 observational studies, showing that DPP-4 inhibitors produce a non-significant decrease in the risk for COVID-19-related death. However, when administered in the inpatient setting, DPP-4 inhibitors decrease the risk for COVID-19-related death by 50%. Ongoing randomized controlled trials will shed further light.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/mortality , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Observational Studies as Topic/methods , COVID-19/blood , Diabetes Mellitus, Type 2/blood , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Mortality/trends
4.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016215

ABSTRACT

The current outbreak of severe acute respiratory distress syndrome (SARS) or nCOVID-19 pandemic, caused by the coronavirus-2 (CoV-2), continues to wreak havoc globally. As novel vaccines are being discovered and developed, small molecule drugs still constitute a viable treatment option for SARS-CoV-2 infections due to their advantages such as superior patient compliance for oral therapies, reduced manufacturing costs and ease of large scale distribution due to better stability and storage profiles. Discovering new drugs for SARS-CoV-2 infections is a time consuming and expensive proposition. In this regard, drug repurposing is an appealing approach which can provide rapid access to therapeutics with proven record of safety and efficacy. We investigated the drug repurposing potential of a library of dipeptidyl peptidase 4 (DPP4) inhibitors which are currently marketed for type-2 diabetes as treatment option for SARS-CoV-2 infections. These computational studies led to the identification of three marketed DPP4 inhibitors; gemigliptin, linagliptin and evogliptin as potential inhibitors of SARS-CoV-2 Mpro viral cysteine protease. In addition, our computational modeling shows that these drugs have the potential to inhibit other viral cysteine proteases from the beta coronavirus family, including the SAR-CoV Mpro and MERS-CoV CLpro suggesting their potential to be repurposed as broad-spectrum antiviral agents.

5.
J Diabetes ; 12(9): 649-658, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-737642

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV), which cause acute respiratory distress syndrome and case fatalities. COVID-19 disease severity is worse in older obese patients with comorbidities such as diabetes, hypertension, cardiovascular disease, and chronic lung disease. Cell binding and entry of betacoronaviruses is via their surface spike glycoprotein; SARS-CoV binds to the metalloprotease angiotensin-converting enzyme 2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition to ACE2. DPP4 is a ubiquitous membrane-bound aminopeptidase that circulates in plasma; it is multifunctional with roles in nutrition, metabolism, and immune and endocrine systems. DPP4 activity differentially regulates glucose homeostasis and inflammation via its enzymatic activity and nonenzymatic immunomodulatory effects. The importance of DPP4 for the medical community has been highlighted by the approval of DPP4 inhibitors, or gliptins, for the treatment of type 2 diabetes mellitus. This review discusses the dysregulation of DPP4 in COVID-19 comorbid conditions; DPP4 activity is higher in older individuals and increased plasma DPP4 is a predictor of the onset of metabolic syndrome. DPP4 upregulation may be a determinant of COVID-19 disease severity, which creates interest regarding the use of gliptins in management of COVID-19. Also, knowledge of the chemistry and biology of DPP4 could be utilized to develop novel therapies to block viral entry of some betacoronaviruses, potentially including SARS-CoV-2.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , COVID-19 , Comorbidity , Dipeptidyl Peptidase 4 , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL